OCR Maths FP1 Topic Questions from Papers Proof by Induction Answers

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com

1(iv)B1Explicit check for
$$n = 1$$
 or $n = 2$ $M^{k} = \begin{pmatrix} 2^{k} 3(2^{k} - 1) \\ 0 & 1 \end{pmatrix}$ M1Induction hypothesis that result is true for M^{k} $\begin{pmatrix} 2^{k+1} 3(2^{k+1} - 1) \\ 0 & 1 \end{pmatrix}$ A1A1A1A1A1A1A16Explicit statement of induction conclusion

(Q9, June 2005)

2	$1^{2} = \frac{1}{6} \times 1 \times 2 \times 3$ $\frac{1}{6}n(n+1)(2n+1) + (n+1)^{2}$	B1 M1 DM1		Show result true for $n = 1$ or 2 Add next term to given sum formula, any letter OK Attempt to factorise or expand and simplify
	$\frac{1}{6}(n+1)(n+2)\{2(n+1)+1\}$	A1 A1	5 5	Correct expression obtained Specific statement of induction conclusion, with no errors seen

(Q2, Jan 2006)

3	(i)	M1		Attempt at matrix multiplication
	$\mathbf{A}^2 = \begin{pmatrix} 4 \ 0 \\ 0 \ 1 \end{pmatrix} \mathbf{A}^3 = \begin{pmatrix} 8 \ 0 \\ 0 \ 1 \end{pmatrix}$	A1 A1	3	Correct A^2 Correct A^3
	(ii) $\mathbf{A}^{n} = \begin{pmatrix} 2^{n} & 0 \\ 0 & 1 \end{pmatrix}$ (iii)	B1 B1 M1 A1 A1	1 4 8	Sensible conjecture made State that conjecture is true for $n = 1$ or 2 Attempt to multiply \mathbf{A}^n and \mathbf{A} or vice versa Obtain correct matrix Statement of induction conclusion

(Q7, June 2006)

x

Т

ИT

—

PhysicsAndMathsTutor.com

	4	(i)	B1		Correct expression for u_{n+1}
			M1		Attempt to expand and simplify
		$u_{n+1}-u_n=2n+4$	A1	3	Obtain given answer correctly
MT		(ii)	B1		State $u_1 = 4$ (or $u_2 = 10$) and is
			M1		divisible by 2 State induction hypothesis true for
1T			M1		<i>u</i> _n
			A1		Attempt to use result in (ii)
			A1	5	Correct conclusion reached for u_{n+1}
				8	Clear, explicit statement of induction conclusion

(Q6, Jan 2007)

 \pm

5	$(1^{3} =)\frac{1}{4} \times 1^{2} \times 2^{2}$ $\frac{1}{4}n^{2}(n+1)^{2} + (n+1)^{3}$ $\frac{1}{4}(n+1)^{2}(n+2)^{2}$	B1 M1 M1(indep) A1 A1	5	Show result true for <i>n</i> = 1 Add next term to given sum formula Attempt to factorise and simplify Correct expression obtained convincingly Specific statement of induction conclusion
			5	

(Q2, June 2007)

6	(i) $u_2 = 4, \ u_3 = 9, \ u_4 = 16$	M1 A1	2	Obtain next terms All terms correct
	(ii) $u_n = n^2$	B1	1	Sensible conjecture made
	(iii)	B1 M1 A1 A1	4 7	State that conjecture is true for $n = 1$ or 2 Find u_{n+1} in terms of n Obtain $(n + 1)^2$ Statement of Induction conclusion

(Q8, Jan 2008)

 $\alpha \beta \alpha \beta$

B1	Establish result is true, for $n = 1$ (or 2 or 3)
M1	Attempt to multiply A and A^n , or vice versa
M1	Correct process for matrix multiplication
A1	Obtain 3^{n+1} , 0 and 1
A1	Obtain $\frac{1}{2}(3^{n+1}-1)$
A1	Statement of Induction conclusion, only
	if 5 marks earned, but may be in body of
	working
6	
	(Q4, June 200
_	M1 M1 A1 A1 A1

8	(i) $13^n + 6^{n-1} + 13^{n+1} + 6^n$	B1		Correct expression seen
Ŭ		M1		Attempt to factorise both terms in (i)
	(ii)	A1	3	Obtain correct expression
		B1		Check that result is true for $n = 1$ (or 2)
		B1		Recognise that (i) is divisible by 7
		B1		Deduce that u_{n+1} is divisible by 7
		B1	4	Clear statement of Induction conclusion
			7	

(Q7, Jan 2009)

				$\alpha \beta$
9	i)	M1		Attempt to find next 2 terms
	$u_2 = 7 \ u_3 = 19$	A1		Obtain correct answers
		A1	3	Show given result correctly
	(ii)	M1		Expression involving a power of 3
	$\overset{u_n}{lpha} \bar{\beta}^{=2(3^{n-1})+1}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	A1	2	Obtain correct answer
	(iii)	B1ft		Verify result true when $n = 1$ or $n = 2$
		M1		Expression for u_{n+1} using recurrence
	$u_{n+1} = 3(2(3^{n-1})+1) - 2$			relation
		A1		Correct unsimplified answer
	$u_{n+1} = 2(3^n) + 1$	A1		Correct answer in correct form
		B 1		Statement of induction conclusion
			5	
			10	

(Q10, June 2009)

B1 Correct \mathbf{M}^2 seen
M1 Convincing attempt at matrix
multiplication for M³A13Obtain correct answer
B1ft 1 State correct form, consistent with (i)
M1 Correct attempt to multiply $\mathbf{M} \& \mathbf{M}^k$ or v.v.
A1 Obtain element $2(k+1)$
A1 Clear statement of induction step, from correct working
B1 4 Clear statement of induction conclusio following their working
(Q10, Jan 20
B1Establish result true for $n = 1$ or $n = 2$ M1Add next term to given sum formulaM1Attempt to factorise or expand and
 simplify to correct expression A1 Correct expression obtained A1 5 Specific statement of induction conclusion
5
(Q1, June 20
B1* Establish result true for $n = 1$ or 2
M1* Use given result in recurrence relation in a relevant way
A1*Obtain $2^n + 1$ correctlydepA14Specific statement of induction conclusion
4
(Q3, Jan 20
B1Establish result true for $n = 1$ or 2M1*Add next term to given sum formulaDM1Combine with correct denominator

A1

A1

5

5

10 (i)

Obtain correct expression convincingly

Specific statement of induction conclusion, provided 1st 4 marks earned

РМТ

РМТ

14	(i)		M1Attempt at matrix multiplicationA1Obtain \mathbf{M}^2 correctlyA1Obtain given answer correctly[3]
((ii)	$\begin{pmatrix} 3^n & 0\\ 3^n - 1 & 1 \end{pmatrix}$	B1 3 elements correct B1 4 th element correct [2]
((iii)	$\begin{pmatrix} 3^{k+1} & 0 \\ 3^{k+1} - 1 & 1 \end{pmatrix}$	B1 M1Show that their result is true for $n = 1$ or 2 Attempt to find $\mathbf{M}^k \cdot \mathbf{M}$ or vice versaA1Obtain correct answerB1 [4]Complete statement of induction conclusionMust have $1^{st} 3$ marks

(Q7, Jan 2012)

15		B1	Verify result true when $n = 1$	
_	+	M1*	Add next term in series α	
	=	DepM1	Attempt to obtain 3 ^{k+1} correctly	
		A1	Show sufficient working to justify correct	
			expression	
		B1	Clear statements of Induction processes, but 1st	
	P		4 marks must all be earned.	
		[5]		

(Q5, June 2012)

+

16	(i)	2 2 2	B1	B1 x 3, Obtain 3 correct values
		$\frac{2}{3}$ $\sqrt{\frac{2}{5}}$, $\frac{2}{7}$	B1	
			B1	Justify given answer
			[3]	
	(ii)	(2	M1	Fraction, in terms of n, with correct numerator or denominator
		$\overline{2n-1}$	A1	Obtain correct answer a.e.f.
			[2]	
	(iii)	2	B1ft	Verify result true when $n = 1$, for their (ii), or $n = 2, 3$ or 4
		$\overline{2(n+1)-1}$	M1	Expression for u_{n+1} using recurrence relation in terms of <i>n</i> using their (ii)
			A1	Correct unsimplified answer
			A1	Correct answer in correct form
			B1	Specific statement of induction conclusion, previous 4 marks must be earned, $n=1$
			[5]	must be verified

(Q10, Jan 2013)

17		B1 M1	Establish result true for $n = 1$ or $n = 2$ Multiply M and M ^{<i>k</i>} , either order
	$2(2^{k+1}-2)+2$ or $2^{k+1}+2^{k+1}-2$	A1	Obtain correct element
		A1	Obtain other 3 correct elements
		A1	Obtain $2^{k+2} - 2$ convincingly
		B1	Specific statement of induction conclusion, provided 5/5 earned so far and verified for $n = 1$
		[6]	

