OCR Maths FP1

Topic Questions from Papers
 Proof by Induction

Answers

(Q9, June 2005)

2	$\begin{aligned} & 1^{2}=\frac{1}{6} \times 1 \times 2 \times 3 \\ & \frac{1}{6} n(n+1)(2 n+1)+(n+1)^{2} \\ & \frac{1}{6}(n+1)(n+2)\{2(n+1)+1\} \end{aligned}$	B1 M1 DM1 A1 A1	5	Show result true for $n=1$ or 2 Add next term to given sum formula, any letter OK Attempt to factorise or expand and simplify Correct expression obtained Specific statement of induction conclusion, with no errors seen

(Q2, Jan 2006)

3	(i)	M1		Attempt at matrix multiplication
	$\mathbf{A}^{2}=\left(\begin{array}{ll} 4 & 0 \\ 0 & 1 \end{array}\right) \quad \mathbf{A}^{3}=\left(\begin{array}{ll} 8 & 0 \\ 0 & 1 \end{array}\right)$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	$\begin{aligned} & \operatorname{Correct~} \mathbf{A}^{2} \\ & \operatorname{Correct} \mathbf{A}^{3} \end{aligned}$
	(ii) $\quad \mathbf{A}^{\mathrm{n}}=\left(\begin{array}{cc}2^{n} & 0 \\ 0 & 1\end{array}\right)$	B1	1	Sensible conjecture made
	(iii)	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		State that conjecture is true for $n=1$ or 2 Attempt to multiply \mathbf{A}^{n} and \mathbf{A} or vice versa Obtain correct matrix
		A1	4	Statement of induction conclusion

4	(i)	B1		Correct expression for u_{n+1}
		M1		Attempt to expand and simplify
	$u_{n+1}-u_{n}=2 n+4$	A1	3	Obtain given answer correctly
	(ii)	B1		State $u_{1}=4$ (or $u_{2}=10$) and is divisible by 2
		M1		State induction hypothesis true for
		M1		
		A1		Attempt to use result in (ii)
		A1	5	Correct conclusion reached for u_{n+1}
			8	Clear,explicit statement of induction conclusion

(Q6, Jan 2007)

$\mathbf{5}$	$\left(1^{3}=\right) \frac{1}{4} \times 1^{2} \times 2^{2}$	B1		Show result true for $n=1$
		M1		Add next term to given sum formula
Attempt to factorise and simplify				
4	$n^{2}(n+1)^{2}+(n+1)^{3}$	M1(indep)		A1
A1	5	Correct expression obtained convincingly		
$\frac{1}{4}(n+1)^{2}(n+2)^{2}$			Specific statement of induction conclusion	
		$\mathbf{5}$		

(Q2, June 2007)

6	(i) $u_{2}=4, u_{3}=9, u_{4}=16$ (ii) $u_{n}=n^{2}$ (iii)	M1		Obtain next terms
		A1	2	All terms correct
		B1	1	Sensible conjecture made
		$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$		State that conjecture is true for $n=1$ or 2 Find u_{n+1} in terms of n Obtain $(n+1)^{2}$
		A1	4	Statement of Induction conclusion

B1 Establish result is true, for $n=1$ (or 2 or 3)
M1 Attempt to multiply \mathbf{A} and \mathbf{A}^{n}, or vice versa
M1 Correct process for matrix multiplication
A1 Obtain $3^{n+1}, 0$ and 1
A1 Obtain $1 / 2\left(3^{n+1}-1\right)$
A1 Statement of Induction conclusion, only if 5 marks earned, but may be in body of working
(Q4, June 2008)

\begin{tabular}{|c|c|c|c|c|}
\hline 8 \& \begin{tabular}{l}
(i) \(13^{n}+6^{n-1}+13^{n+1}+6^{n}\) \\
(ii)
\end{tabular} \& B1
M1
A1
B1
B1
B1
B1 \& 3

4

4 \& | Correct expression seen |
| :--- |
| Attempt to factorise both terms in (i) |
| Obtain correct expression |
| Check that result is true for $n=1$ (or 2) |
| Recognise that (i) is divisible by 7 |
| Deduce that u_{n+1} is divisible by 7 |
| Clear statement of Induction conclusion |

\hline
\end{tabular}

(Q7, Jan 2009)

9	i) $u_{2}=7 \quad u_{3}=19$ (ii) $u_{n}=2\left(3^{n-1}\right)+1$ (iii) $\begin{aligned} & u_{n+1}=3\left(2\left(3^{n-1}\right)+1\right)-2 \\ & u_{n+1}=2\left(3^{n}\right)+1 \end{aligned}$	M1 A1 A1 M1 A1 B1ft M1 A1 A1 B1	5 10	Attempt to find next 2 terms Obtain correct answers Show given result correctly Expression involving a power of 3 Obtain correct answer Verify result true when $n=1$ or $n=2$ Expression for u_{n+1} using recurrence relation Correct unsimplified answer Correct answer in correct form Statement of induction conclusion

10 (i)

$$
\mathbf{M}^{2}=\left(\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right) \quad \mathbf{M}^{3}=\left(\begin{array}{ll}
1 & 6 \\
0 & 1
\end{array}\right)
$$

B1 Correct \mathbf{M}^{2} seen
M1 Convincing attempt at matrix
multiplication for \mathbf{M}^{3}
A1 3 Obtain correct answer
(ii) $\mathbf{M}^{n}=\left(\begin{array}{cc}1 & 2 n \\ 0 & 1\end{array}\right)$

B1ft 1 State correct form, consistent with (i)
(iii)

M1 \quad Correct attempt to multiply $\mathbf{M} \& \mathbf{M}^{k}$ or v.v.
A1 Obtain element $2(k+1)$
A1 Clear statement of induction step, from correct working
B1 4 Clear statement of induction conclusion, following their working
(Q10, Jan 2010)

11
B1 Establish result true for $n=1$ or $n=2$
M1 Add next term to given sum formula
M1 Attempt to factorise or expand and simplify to correct expression
A1 Correct expression obtained
A1 5 Specific statement of induction conclusion
5
(Q1, June 2010)

12
B1* Establish result true for $n=1$ or 2
M1* Use given result in recurrence relation in a relevant way
A1* Obtain $2^{n}+1$ correctly
depA14 Specific statement of induction conclusion

4

(Q3, Jan 2011)
13

B1
M1* Add next term to given sum formula
DM1 Combine with correct denominator
A1 Obtain correct expression convincingly
A1 5 Specific statement of induction conclusion, provided $1^{\text {st }} 4$ marks earned
5

14	(i)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Attempt at matrix multiplication Obtain \mathbf{M}^{2} correctly Obtain given answer correctly	
	(ii)	$\left(\begin{array}{cc}3^{n} & 0 \\ 3^{n}-1 & 1\end{array}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ [2]	3 elements correct $4^{\text {th }}$ element correct	
	(iii)	$\left(\begin{array}{cc} 3^{k+1} & 0 \\ 3^{k+1}-1 & 1 \end{array}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { B1 } \\ & {[4]} \end{aligned}$	Show that their result is true for $n=1$ or 2 Attempt to find $\mathbf{M}^{k} \mathbf{M}$ or vice versa Obtain correct answer Complete statement of induction conclusion	Must have ${ }^{\text {st }} 3$ marks

(Q5, June 2012)

16	(i)	$\frac{2}{3}, \quad \frac{2}{5}$,		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	B1 x 3, Obtain 3 correct values Justify given answer
	(ii)	$\frac{2}{2 n-1}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	Fraction, in terms of n, with correct numerator or denominator Obtain correct answer a.e.f.
	(iii)	$\frac{2}{2(n+1)-1}$		B1ft M1 A1 A1 B1 [5]	Verify result true when $n=1$, for their (ii), or $\mathrm{n}=2,3$ or 4 Expression for u_{n+1} using recurrence relation in terms of n using their (ii) Correct unsimplified answer Correct answer in correct form Specific statement of induction conclusion, previous 4 marks must be earned, $n=1$ must be verified

(Q10, Jan 2013)

17			B1	Establish result true for $n=1$ or $n=2$	
			$2\left(2^{k+1}-2\right)+2$ or $2^{k+1}+2^{k+1}-2$	M1	Multiply \mathbf{M} and \mathbf{M}^{k}, either order
			A1	Obtain correct element	
			A1	Obtain other 3 correct elements	
			A1	Obtain $2^{k+2}-2$ convincingly	
			B1	Specific statement of induction conclusion, provided $5 / 5$ earned so far and	
			[6]		

